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A transient heating technique, improving the constant-rate-heating technique
for the measurements of thermal diffusivities of metals, is proposed. For a physi-
cal model of a specimen to be measured, the transient heat-conduction equation
was solved with some boundary conditions, and the solution obtained was used
as the principle of the present transient heating technique for determining the
thermal diffusivity of the specimen. Additionally, a thermal analysis was made
to satisfy a boundary condition involved in the principle, that is, the condition
of radiative thermal insulation at the two end surfaces of the specimen. To verify
the validity of the present technique, the thermal diffusivity of iron, whose ther-
mophysical properties are well-known, was measured with the same apparatus
as used in our previous work, and the experimental results are discussed.
Moreover, thermal diffusivities of thermocouple materials, namely, constantan,
chromel, and alumel, were measured by the technique in the temperature range
of 360 to 680 K.

KEY WORDS: alumel; chromel; constantan; thermal conductivity; thermal
diffusivity; transient technique.

1. INTRODUCTION

Investigations of measurement techniques for thermophysical properties of
solid materials are of great importance in relation to the development of
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new and advanced engineering materials, space technology, and applica-
tions of solar energy. Therefore, a number of studies on the measurement
techniques has been made so far, for example, those on ultrahigh-speed,
high-temperature, and multiple measurements of the thermophysical
properties by Cezairliyan et al. [1, 2] and those on multiple measurements
by Taylor [3] and by Takahashi and Sugawara [4], as examples applying
the resistive self-heating method. With respect to their measurement techni-
ques, there is a detailed review by Takahashi [5]. The present authors
have also developed a technique for simultaneous measurement of the total
hemispherical emissivity and specific heat of metals, which belongs to the
transient calorimetric technique [6, 7]. Moreover, we aim to develop a
convenient and easy technique for measurements of multiple thermophysical
properties of solids, particularly thermal diffusivity.

For convenient measurements of the thermal diffusivity of metals, the
constant-rate heating technique [8-10] has been applied hitherto, as one
of the measurement techniques for transiently heating a specimen; that is,
it uses a solution for a one-dimensional heat-conduction equation. Addi-
tionally, experimental studies on this technique were made by Kosaka et al.
[11, 12]. The technique, however, has some disadvantages as described
later, so it needs improvement on the basic formula used as the principle
and, in turn, the solution for the heat-conduction equation and the method
of its application.

The objective of this study was to develop a convenient and practical
technique for measuring the thermal diffusivity of metals. For a cylindrical
specimen to be used for the measurement, a solution of the transient heat-
conduction equation is obtained here with some boundary conditions,
which is presumed to be appropriate as a principle of the measurement
technique for thermal diffusivity. The thermal diffusivity measurement
using the solution is carried out for an iron specimen, then the validity of
the measurement technique is verified. In addition, thermal diffusivities
of thermocouple materials, constantan, chromel, and alumel, are also
measured by the technique and their temperature dependences are clarified.

2. PRINCIPLE OF THERMAL DIFFUSIVITY MEASUREMENTS
BY A TRANSIENT HEATING TECHNIQUE

The constant-rate heating technique for measuring the thermal dif-
fusivity of a solid material is applicable only for the case where the cylindri-
cal side surface (referred to hereafter as the side surface) of a cylindrical
specimen made of the material is heated at a constant temperature rate
[10]. In usual experiments, however, it is difficult to heat the side surface at
a constant temperature rate. In other words, the temperature rise of the side
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where A is the thermal diffusivity of the specimen. Assuming that the initial
temperature is zero, the initial condition for Eq. (1) is given by

Equation (1) can then be rewritten by the Laplace transformation as
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surface is nonlinear in time. Therefore, it is desired that a more useful
technique is proposed for the thermal diffusivity measurement, which is
made by a transient, nonlinear heating of a specimen, not by a constant,
temperature rate. The principle of the measurement technique proposed in
this study is described below.

A physical model of the cylindrical specimen for the measurement is
shown in Fig. 1. The specimen is concentrically placed in the center of a
cylindrical electric furnace. In the figure, R and L are the radius and length
of the specimen, respectively, and r and z are the radial and axial coor-
dinates of the specimen, respectively. On the specimen, it is assumed that
the side surface is heated transiently and uniformly over the surface by
thermal radiation from the furnace, and both of the end circular surfaces
of the specimen are thermally insulated. Under the above conditions, the
temperature of the specimen, T, depends solely on the time t and radial
position r. Consequently, the heat-conduction equation for the specimen
can be written as

The boundary condition at the side surface may be given, assuming that
the temperature rise of the specimen (i.e., specimen temperature Ts versus
t curve) is nonlinear with respect to t, by the following equation with
constants k1 and k2:

The Laplace transformation is employed to solve Eq. (1), which is defined
as
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Fig. 1. Physical model of transient heating
technique and symbols.

In addition, Eq. (3) can be expressed with the Laplace transformation as

At r = 0, the solution of the Bessel equation, Eq. (5), is given by
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where j is a constant and I0(x) is the modified Bessel function of the first
kind of zero order, corresponding to the complex variable.

Combining Eqs. (6) and (7), the constant j can be expressed as
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Inspection of Eq. (11) reveals that once the temperature difference TTR has
been measured by two thermocouples attached to the specimen, as
described later, and the unknown constants K1 and k2 are obtained from
the temperature-rise curve, the thermal diffusivity of the specimen, A, can
be determined from Eq. (11). This is the principle of the transient heating
technique for measuring the thermal diffusivity of the solid specimen
proposed in this study.

The constant-rate heating technique [8], which has been used so far,
corresponds to the special case of the present technique. That is, when
using the following Eq. (12) as the boundary condition, instead of Eq. (3),
the solution for the constant-rate heating technique, so called, can be easily
obtained and the expression for the thermal diffusivity is derived from
Eq. (11) as the following Eq. (13):
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Accordingly, Eq. (7) becomes

By the inverse transformation of Eq. (9) with the Bromwich's integral
formula, the solution for temperature T can be obtained. As a result, the
temperature T(r, t) can be expressed as

where J0 and J1 are the Bessel functions of the first kind of zero and first
order, respectively, and Bn is the positive root of J0(BnR) = 0. If the initial
temperature is T1, not zero, the temperature T in Eq. (10) may be replaced
by ( T – T 1 ) .

From Eq. (10), the temperature difference for any time t between the
side surface and the central axis of the specimen, TTR[ = T(R, t) — T(0, t ) ] ,
may be expressed, by neglecting the starting transient, in the form



3. APPLICATION OF THE TRANSIENT HEATING TECHNIQUE
TO METALLIC SPECIMENS

In practice, when applying the transient heating technique to the
thermal diffusivity measurement of a specimen, the condition of thermal
insulation for the specimen end surfaces must be satisfied. However, this
condition has not been adequately satisfied in experimental investigations
made so far [11, 12]. In this study, a technique for radiative insulation is
employed to attain it and is described below.

An analysis of heat conduction is made again for the physical model
dealt with in Section 2 (Fig. 1), with the additional assumption that the
specimen and the furnace are placed in a black vacuum chamber. Taking
into consideration the heat losses by radiation heat transfer on both
specimen end surfaces, the heat-conduction equation for the specimen
becomes two-dimensional and can be written as

Here, the net radiation heat flux qrad may be derived as follows: the upper
part of the furnace inner surface, which exists above the top end surface
in Fig. 1, is replaced with an imaginary surface expressed as dashed lines
in Fig. 2. In turn, on the parts indicated by the dashed lines in Fig. 2,
the cylindrical part, having a length L0, and the circular part, having a
radius R, correspond to the upper part of the furnace and the surrounding
wall (i.e., a part of the inside wall of the vacuum chamber), respectively.
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The boundary condition at the top (or bottom) end surface of the specimen
in Fig. 1 is given, denoting the net radiation heat loss (heat flux) from the
surface to the surroundings by qrad, by

The initial condition for Eq. (14) is given, assuming the initial temperature
to be T1, by

The boundary condition at the side surface is given by
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Fig. 2. Physical model for radiation heat transfer on the end
surface of the specimen.

These two parts are assumed black. In Fig. 2, A is the surface area, T is the
temperature, and eh is the total hemispherical emissivity, and the physical
quantities of the specimen, furnace, and surrounding wall are expressed by
subscripts 1, 2 and 3, respectively. It is assumed that the surrounding wall
temperature T3 is constant and the furnace temperature T2, which is a
function of time, is expressed as

where Tss is the cylindrical side surface temperature of the specimen and G
is a supplementary temperature determined by the experiment. Under this
assumption, the local radiation heat flux qrad of an elementary annular ring
at position r on the end surface is expressed as

where eh, 1 is the total hemispherical emissivity of the specimen, Fd1_3 is the
angle factor for radiation interchange between the elementary annular ring
dA1 and the surface A3, and is given by the following equations [13]:
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by solving Eq. (14) with the conditions of Eqs. (15)-(17), the temperature
distributions in the specimen can be obtained. The value G in Eq. (18) was
found to be 100 K by the experiment described below.

To satisfy the condition of the radiative insulation for the specimen
end surfaces, it is necessary to keep qrad = 0. However, it is difficult to
maintain this conditional exactly. So, a method to satisfy the situation
approximately by designing the end length L0 of the furnace is devised here
and described below.

For various values of L0, Eq. (14) was solved with the conditions of
Eqs. (15)-(20), and the temperature differences between the specimen center
and the specimen end on the z axis, TTZ [ = T(0, t)z=0 — T(0, t)z=L/2], were
calculated. The numerical calculations were carried out for D = 30 mm and
L = 60 mm (dimensions of the specimen in this study) and with k1 and k2

values obtained by the preliminary experiment in this study. For the value
of eh, 1 in the calculation, the value for iron used in this experiment, eh, was
taken as a reference value (data from Sasaki et al. [15]). The numerical
results thus obtained are shown in Fig. 3 for Tss = 500 K, G = 100 K, and
T3 = 294 K. It is seen from Fig. 3 that the temperature difference TTz

becomes zero at L0/D ~ 0.6 for the present thermal conditions; in other
words, the top and bottom surfaces are considered to be almost thermally
insulated for this dimensionless length of L0/D. Denoting L0 for the
radiative insulation (i.e., the optimum length of L0) by L0, opt, the variation
of L0, opt/D with temperature Tss is illustrated in Fig. 4. From Fig. 4, it is
seen that the length of L0, opt/D is nearly constant with Tss and is about 0.6.

Fig. 3. Variation of temperature difference TTZ with
length L0/D.
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Also, for the length of L0/D = 0.6, the temperature differences ATZ for this
case were calculated. The results for ATZ, thus obtained, are also shown in
Fig. 4; however, the maximum value of |TTZ| is seen to be only 0.04 K.
Therefore, the length of L0, opt/D = 0.6 was adopted for the design of the
furnace; strictly speaking, the length L0, opt was correctly calculated taking
into consideration the actual diameter of the furnace, Df.

4. EXPERIMENTAL VERIFICATION OF THE TECHNIQUE

4.1. Experimental Apparatus and Specimen

In this study, an apparatus having a vacuum chamber was used, which
was previously employed for simultaneously measuring total emissivity and
specific heat of metals [14]. Therefore, the full details are not given here.
The main parts of the apparatus are shown schematically in Fig. 5: it con-
sists of a vacuum chamber (1) (about 300 mm in inside diameter and
500 mm in inside height) equipped with a cylindrical cooled bath (2),
a specimen (3), and a movable electric furnace (6). The bath was cooled by
water and its inside wall was kept at a constant temperature (294 K).

Iron of 99.98 % purity, which was the same material as that used in
the previous study [15], was chosen as a sample material to verify the
validity of the transient heating technique proposed. The configuration of
a specimen used for its verification is indicated in Fig. 6. The specimen was
polished and cleaned, then was suspended by three fine wires of constantan
0.1 mm in diameter [supporting wires (4) in Fig. 5] in the vacuum chamber.

Fig. 4. Optimum length L0, opt and temperature difference ATz.
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Fig. 5. Schematic drawing of the experimental
apparatus: (1) vacuum chamber; (2) cooled bath;
(3) specimen; (4) supporting wires; (5) thermo-
couples; (6) electric furnace.

Fig. 6. Configuration of the specimen.

268



Thermal Diffusivity of Metals 269

Three iron-constantan thermocouples 75 um in diameter [thermocouples
(5) in Fig. 5], namely, thermocouples 1, 2, and 3 shown in Fig. 6, were
attached to the specimen; thermocouples 1 and 2 were for measuring the
temperature difference TTR, and thermocouple 3 was for monitoring an
electric power supplied to the electric furnace to make the temperature rate
of the side surface as constant as possible. Hot junctions of thermocouples
1 and 2 were set in the pin holes, 0.3 mm in diameter and 4 mm in depth,
drilled at the center and near the edge on the end surface, respectively. The
symbol R' in Fig. 6 denotes the radius indicating the attached location of
thermocouple 2. The dimensions of the iron specimen were as follows:
diameter D = 29.85 mm, length L = 59.60 mm, and radius R' = 14.08 mm.
The temperature Tss was controlled so as to keep nearly constant the time
rate of the temperature rise by means of a temperature controller with
thermocouple 3 as a monitor. The electric furnace was 40 mm in inside
diameter and 105 mm in length, designed taking the length L0, opt into con-
sideration. The vacuum in the chamber was maintained at less than
2.6 x 10–3 Pa, during all the measurements for the iron specimen and, in
addition, for other specimens described in Section 5.

4.2. Experimental Results for the Iron Specimen and Discussion

The experimental result obtained for the iron specimen is shown in
Fig. 7. Figure 7 shows that the temperature Tss is represented by a gently
curved line, not a straight line. Accordingly, an expression corresponding
to Eq. (3) must be determined from its temperature-rise curve. To obtain
the more accurate expression, the curve was, in fact, divided into the
following three parts: the first part, where the temperature Tss rose slowly,

Fig. 7. Variation of temperature Tss with time t.
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referred to hereafter as region I; the second part, where the temperature
rose almost linearly, referred to as region II; and the third part, where the
temperature rise rate decreased, referred to as region III. The constants k1

and k2 in Eq. (3) for these three regions were determined from the
experimental result by least-squares analysis. The temperatures indicating
these regions and the results obtained are listed in Table I. The thermal dif-
fusivity A of the iron specimen was determined from the data TTR at time
t and from the constants k1 and k2 in Table I using Eq. (11). The tem-
perature differences TTR were less than about 3 K. If the constant-rate
heating technique based on Eq. (13) was applied to the present experimen-
tal results, the thermal diffusivity might be obtained only for region II with
the same accuracy as that obtained in this study.

The a values of iron, thus obtained, are shown in Fig. 8. As expected,
the thermal diffusivity of iron decreases monotonically with temperature. In
Fig. 8, the recommended values in the TPRC Data, Series [16] are also

Fig. 8. Experimental result on the thermal diffusivity of iron.

Table I. Constants k1 and k2 in Eq. (3) for the Iron Specimen [t is in s and
T is in K in Eq. (3)]

Region I

(Tss< 415 K)

k1 = -0.07371
k2 = 3.042 x 10–4

Region II

(Tss = 415 to 535 K)

k1 = 0.4607
k2= -7.198 x 10–5

Region III

(Tss > 535 K)

k1 = 0.4933
k2 = - 8.581 x 10–5



shown. Our data agree with the recommended values within +6%. Addi-
tionally, in Fig. 8, differences of +8% from the recommended values are
indicated by the two dashed lines for reference. An error analysis was made
for the a values obtained by the present technique. The uncertainty (total
error) in the measured a values, which is attributable to the errors involved
in measuring the radial position R' and the temperature difference TTR,
the error caused by expressing the temperature-rise curve of the specimen
as Eq. (3), etc., was estimated to be 7.6%. It may be concluded that the
present transient heating technique is a convenient and practical technique
for measuring the thermal diffusivity of metals.

5. MEASUREMENTS ON CONSTANTAN, CHROMEL,
AND ALUMEL

5.1. Materials and Specimens

Three thermocouple materials, namely, constantan, chromel, and
alumel, were selected for measurements, because there are very few data on
their thermal diffusivity. The constantan was the same as that used in
Ref. 6, while the chromel and alumel were the same as those used in
Ref. 14. The major chemical components (%, by weight) are as follows:
(i) for constantan, 54.7 Cu, 43.5 Ni, 1.19 Mn, and 0.49 Fe; (ii) for chromel,
91.2 Ni, 7.88 Cr, 0.71 Mn, and 0.52 Si; and (iii) for alumel, 95.5 Ni, 1.92 Si,
1.29 Mn, and 0.99 Al. Three cylindrical-shaped specimens, similar to the
configuration of the iron specimen used previously, were made of the three
materials. Physical dimensions of the specimens are given in Table II.

5.2. Results on Thermal Diffusivity

The thermal diffusivity measurements by the present technique were
carried out for the specimens, and the temperature-rise curves were
obtained. The curve for the constantan specimen is shown by the dashed
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Table II. Dimensions of the Specimens

Specimen

Constantan
Chromel
Alumel

D
(mm)

29.93
30.05
30.05

L
(mm)

60.08
59.95
60.01

R'
(mm)

13.69
14.19
14.15
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Fig, 9. Thermal diffusivity of constantan.

line in Fig. 7 as an example. Similarly to the case of the iron specimen, the
curves were divided into three regions as shown in Fig. 7, and then the
constants k1 and k2 in Eq. (3) were given for all the regions. Using the
measured values of TTR, the A values of constantan, chromel, and alumel
were obtained from Eq. (11). The A values thus obtained are plotted as a
function of temperature in Figs. 9-11 and listed in Table III. From these
figures, it is seen that the thermal diffusivities of these thermocouple

Fig. 10. Thermal diffusivity of chromel.
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Table III. Measured Values of the Thermal Diffusivity of Constantan,
Chromel, and Alumel

Temperature
(K)

360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

Thermal diffusivity
(10 – 6 m2 . s–1)

Constantan

6.35
6.50
6.55
6.65
6.80
6.95
7.10
7.30
7.30
7.40
7.45
7.55
7.75
7.80
7.90
7.95
8.13

Chromel

4.67
4.84
4.87
4.88
4.88
4.87
4.94
5.08
5.24
5.15
5.30
5.31
5.32
5.45
5.60
5.65
5.74

Alumel

7.31
7.40
7.53
7.72
8.18
8.30
8.33
8.47
8.68
8.99
9.09
9.24
9.42
9.64
9.86

10.10
10.20

Fig. 11. Thermal diffusivity of alumel.
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Fig. 12. Thermal conductivity of constantan.

Table IV. Thermal Conductivity Values of Constantan, Chromel, and
Alumel, Evaluated from Thermal Diffusivity Dataa

Temperature
(K)

360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

Thermal conductivity
(W . m–1 . K–1)

Constantan

25.1
26.0
26.5
27.2
28.1
29.0
29.9
31.1
31.4
32.1
32.6
33.4
34.6
35.2
36.0
36.5
37.7

Chromel

16.7
17.9
18.5
18.8
19.1
19.3
19.8
20.5
21.3
21.1
21.9
22.1
22.2
22.9
23.6
24.0
24.5

Alumel

30.0
30.8
31.7
32.8
35.1
35.9
36.3
37.1
38.2
39.8
40.4
41.3
42.2
43.4
44.6
45.9
46.6

" In evaluation, the specific heat values obtained in previous work
[7, 14] were used.
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materials increase with increasing temperature, in contrast to the trend of
iron's thermal diffusivity. In Fig. 9, other data on constantan are shown as
TPRC data expressing a values which have been calculated from the ther-
mal conductivity data by Powers et al. [17] and the specific heat capacity
data obtained in our previous work [7] as A = L / ( c p ) , because the chemical
composition of constantan tested by Powers et al. (Cu, 55.0; and Ni,
45.0%) was much the same as that of constantan used in the present work.
In the above expression, the density p at an arbitrary temperature was
evaluated from the density value measured at room temperature and with
the thermal-expansion data of constantan [18]. It may be noted that the
TPRC data are nearly on a line extrapolated from the present results,
though this is not indicated in Fig. 9. A datum on chromel (Ni, 89.9; Cr,
9.5; and Si, 0.5%) listed in the Thermophysical Properties Handbook of
JSTP [18] is also plotted in Fig. 10 for comparison.

5.3. Evaluation of Thermal Conductivity

The thermal conductivity L of constantan, chromel, and alumel may
be evaluated by using the thermal diffusivity values obtained here and the
specific heat values previously obtained [7, 14], as L = Acp. The L values
thus obtained are listed in Table IV and shown along with other published
data in Figs. 12-14. In Fig. 12, TPRC Data 1 expresses the data for Cu-Ni
alloy (Cu, 59.8; and Ni, 40.0%) of Sager, quoted in the TPRC Data Series

Fig. 13. Thermal conductivity of chromel.
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[17], and TPRC Data 2 expresses the data for constantan of Powers et al.,
aforementioned, also quoted in Ref. 17. The results for constantan in the
present work agree well in trend with Sager's data, although the materials
differ in their chemical composition. In Fig. 13, the present results for
chromel are compared with the data of Shelton and Swanger [19]
obtained with a comparative measurement method for chromel (Ni, 90;
and Cr, 10%) and with those listed in the Handbook of JSTP [18] for
chromel (Ni, 89.9; Cr, 9.5; and Si, 0.5%). Both materials for the two sets
of the other data are nearly the same as ours. The present results for
chromel agree with the data of Shelton and Swanger within 6.7%. In
Fig. 14, the present results for alumel are compared again with the data of
Shelton and Swanger [19] for alumel (Ni, 95; Al, 2; Mn, 2; and Si, 1 %).
As shown in Fig. 14, there are large differences between the present results
and Shelton's data, except for the lower-temperature region; the maximum
difference is about 18%. Part of this difference may be due to the difference
in chemical composition of the materials used. However, it is felt that the
difference in the two sets of thermal conductivity data is more indicative of
the basic difference in the measuring technique.

6. CONCLUSIONS

A convenient and useful technique for measuring the thermal dif-
fusivity of metals has been studied, which is an improvement on the con-
stant-rate-heating technique. The results obtained can be summarized as
follows.

Fig. 14. Thermal conductivity of alumel.



(a) The solution for the heat-conduction equation for a solid
specimen was obtained, and a transient heating technique was
proposed for the measurement of thermal diffusivity of the
specimen.

(b) The method of thermal insulation by radiation on the end sur-
faces of specimen was devised to enable the use of the proposed
technique.

(c) The experiment for the thermal diffusivity measurement was per-
formed using an iron specimen as a reference material, and the
validity of the technique was confirmed.

(d) The thermal diffusivities of constantan, chromel, and alumel were
measured using the technique, and their thermophysical proper-
ties were clarified.

(e) The thermal conductivities of constantan, chromel, and alumel
were evaluated from the thermal diffusivities obtained in this
study and the specific heats obtained previously.
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NOMENCLATURE

A Surface area
c Specific heat
D Diameter of specimen
Df Inside diameter of furnace
F Angle factor
I0 Modified Bessel function of the first kind of zero order
J0 Bessel function of the first kind of zero order
J1 Bessel function of the first kind of first order
j Constant in Eq. (7)
k1, k2 Constants in Eq. (3)
L Length of specimen
L0 End length of imaginary furnace above specimen end surface

(Fig. 2)
qrad Net radiation heat flux
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R Radius of specimen
R' Radial position of pinhole setting thermocouple 2 (Fig. 6)
r Radial coordinate of specimen
s Complex variable in Laplace transformation [Eq. (4)]
T Temperature
T Laplace transform of specimen temperature T [Eq. (4)]
Tss Cylindrical side surface temperature of specimen
t Time
z Axial coordinate of specimen
a Thermal diffusivity
TTR Radial temperature difference in specimen [ = T(R, t) — T(0, t)]
TTZ Temperature difference between two points in specimen

[ = T(0, t)z = 0-T(0, t)z=L/2]
eh, 1 Total hemispherical emissivity of specimen end surface
eh Total hemispherical emissivity of iron
A Thermal conductivity
p Density
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